

Think:

What formula

do I need to find

the area?

The Distributive Property

Goal: Use the distributive property.

Vocabulary

Equivalent expressions:

Numerical expressions that are equal, or algebraic expressions that are equal for all values of the variable(s)

EXAMPLE 1 Finding a Combined Area

Gardening You are planting a vegetable garden and a flower garden. The diagram shows the dimensions of the two adjacent, rectangular gardens. How can you find the total area of the two gardens?

Solution

Method 1 Find the area of each garden, then find the total area.

Area =
$$8(12) + 8(16)$$

= $96 + 128$
= 224 square feet

Method 2 Find the total length, then multiply by the common width.

Answer: The total area of the two gardens is 224 square feet.

The Distributive Property

Words You can multiply a number and a sum by multiplying the number by each part of the sum and then adding these products. The same property applies to subtraction.

Algebra
$$a(b + c) = ab + ac$$
 Numbers $9(2 + 6) = 9(2) + 9(6)$
 $a(b - c) = ab - ac$ $8(7 - 1) = 8(7) - 8(1)$

EXAMPLE 2 Using the Distributive Property

a.
$$-4(a + 13) = \boxed{-4a + (-4)(13)}$$
 Distributive property
$$= \boxed{-4a + (-52)}$$
 Multiply.

b.
$$5[3 - 11 + (-7)] = 5(3) - 5(11) + 5(-7)$$
 Distributive property
$$= 15 - 55 + (-35)$$
 Multiply.
$$= 15 + (-55) + (-35)$$
 Add the opposite of 55.
$$= -75$$
 Add from left to right.

Guided Practice Use the distributive property to evaluate or simplify the expression.

Properties of Addition and Multiplication

Let a, b, and c be integers.

Property	Addition	Multiplication
Commutative Property	a+b=b+a	ab = ba
Associative Property	(a+b)+c=a+(b+c)	(ab)c = a(bc)
Identity Property	a+0=a	a(1) = a
Inverse Property of Addition	$a+(\boxed{-a})=0$	
Multiplication Property of Zero		$a \cdot 0 = \boxed{0}$
Closure Property	a + b is an integer	ab is an integer
Distributive Property	a(b+c)=ab+ac and $a(b+c)=ab+ac$	b - c) = ab - ac

Homework

:: Сору